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Abstract

In this paper, two new theorems on generalized Carleson Operator for a Walsh type wavelet packet system and
for periodic Walsh type wavelet packet expansion of a function feLP[0,1), 1 < p < oo, have been established.
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I. Introduction

A new class of orthogonal expansion in L?(R) with good time frequency and regularity approximation
properties are obtained in wavelet analysis.

These expansions are useful in Signal analysis, Quantum mechanics, Numerical analysis, Engineering and
Technology. Wavelet analysis generalizes an orthogonal wavelet expansion with suitable time frequency
properties. In transient as well as stationary phenomena, this approach have applications over wavelet and short-
time Fourier analysis. The properties of orthonormal bases have been studied in L2(R) for wavelet expansion.
The basic wavelet packet expansions of L?-functions, 1 < p < oo, defined on the real line and the unit interval
have significant importance in wavelet analysis. Walsh system is an example of a system of basic stationary
wavelet packets (Billard [1] and Sjolin [9]). Paley [7], Billard [1] Sjolin [9] and Nielsen [6] have investigated
point wise convergent properties of Walsh expansion of given LP[0,1) functions. At first, in 1966, Lennart
Carleson [3] introduced an operator which is presently known as Carleson operator. In this paper, generalized
Carleson operators for Walsh type wavelet packet expansion and for periodic Walsh type wavelet packet
expansion for any f € L?[0,1) are introduced.

Two new theorems have been established
(1) The generalized Carleson operator for any Walsh-type wavelet packet system is of strong type (p,p), 1<

p < oo
(2) The generalized Carleson operator for periodic Walsh-type wavelet packet expansion for a function

feLP(R), 1<p <oo, CcONVerges a.e..

I1. Definitions and Preliminaries
The structure in which non-stationary wavelet packets live is that of a multiresolution analysis {V,- }jEZ for

L?(R) .To every multiresolution analysis we have an associated scaling function ¢ and a wavelet 1 with the
properties that

v, = span {z'iqb(zf.—k);kez} and {1/1,.,,( = 2592 . —k);j, keZ}
are an orthonormal basis for L? (R ). Write W, = span {2151/)(21'. —k); kez}.

Let N be the set of natural number and (FO(”), Fl(p)) ,p €N, be a family of bounded operators on [?(Z) of the
form

(Fs(p)a)k =Y,eza, ht(n—2k), e=0,1
with hi”)(n) = (-1 hé’”)(l —n) asequence in [}(Z) such that
Fb(p)*Fb(p) + Fl(p)*Fl(p) =1 Fo(p)Fl(p)* =0.
We define the family of functions {w,, }3 recursively by letting wy = ¢ ,w; =y and then for neN
Wan (%) = 2 Zgez b (@wn (2 — @) 2.1)
Wans1 () = 2 Zgex by (@)wn (2x = q) (2.2)
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where 2P < n < 2P*1, The family {w,}7 is our basic non —stationary wavelet packet.
It is known that
{w,(.=k);n =0,k € z}
is an orthonormal basis for L?(R).Moreover,{w, (.—k); 2/ < n < 2/*,k € z} is an orthonormal basis for

W = spw{zjiwl(zf. —k); k € Z}.

Each pair (FO(”), Fl(”))can be chosen as a pair of quardrature mirror filters associated with a multiresolution

analysis, but this is not necessary.
The trigonometric polynomial given by

M (©) = 5 ke b (K)e ™ and mP (§) = 5 Tyes b (k)e ™
are called the symbols of filters.
The Haar low- pass quadrature mirror filter{h,(k)}, is given by hy(0) = hy(1) = % ho(k) =0
otherwise, and the associate high-pass filter {h, (k)}, is given by hy (k) = (=1)* hy(1 — k).
2.1 Walsh function and their properties
The Walsh system {W},}_, is defined recursively on [0,1) on considering

1, 0<x<1
Wo(x) = {0, otherwise

and
Wop (x) = W, (2x) + W, (2x — 1),
Wins1(x) = W, (2x) — W, (2x — 1).
Observe that the Walsh system is the family of wavelet packets obtained by considering ¢ = W,

( 1
| 1, 0<sx< E;
X =4 1
lp( ) -1, E <x<I1;
0, otherwise.

and using the Haar filters in the definition of the non- stationary wavelet packets.
The Walsh system is closed under point wise multiplication. Define the binary operator @: N, X Ny = N, by
Mm@ n = Y72 ,|lm; — n;|2¢, where m = Y72 ,m;2, n = Y72 n;2" and Ny = N U {0}. Then

Wy, COW, () = Wy o (), (23)

(Schipp et al.[8]).
We can carry over the operator @ to the interval [0,1] by identifying those xe [0,1] with a unique expansion
X=27"0 % 27/~ (almost all xe [0,1] has such a unique expansion) by there associated binary sequence {x;}. For
two such point x, y € [0,1], define
x@y = Xiolx; —yil27 7"

The operation @ is defined for almost all x, y € [0,1].Using this definition we have

W, (x @ y) = W, ()W, () (24)
for every pair x,y for which x @ y is defined (Golubov et al.[4]).
2.2 Walsh type wavelet packets

Let {w, },>0,kez be a family of non-stationary wavelet packets constructed by using of family {hé”)(n)} . of
p:

finite filters for which there is a constantK € N such that hg")(n) is the Haar filter for every p > K.
If w; € C1(R) and it has compact support then we call {w, },,~, a family of Walsh type wavelet packets.
2.3 Periodic Walsh type wavelet packet
As Meyer[6-a], an orthonormal basis for L?[0,1) is obtained periodizing any orthonormal wavelet basis
associated with a multiresolution analysis. The periodization works equally well with non stationary wavelet
packets.

Let{w, }"_, be a family of non-stationary basic wavelet packets satisfying |w,, (x)| < C,(1 + |x|)~* "=
for some €,> 0, ne N,. For ne N, we define the corresponding periodic wavelet packets w,, by

() = ) w, (x = k).

kE€Z
It is important to note that the hypothesis about the point- wise decay of the wavelet packets w,, ensures that the

periodic wavelet packets are well defined in L7[0,1) for 1< p < o . Wickerhauser and Hess[11] have proved
that, the family {i, }_, is an orthonormal basis for LF[0,1).
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24 (C,1)and(C,1,1) method
The series

Y 0, = apt+a; +a; + -,
is said to be convergent to the sum S. If the partial sum

S, =apta; +a, +--+a,

tends to finite limit S when n— oo; and a series which is not convergent is said to be divergent.
If

Sp=apta; +a; +--+a,,
and

SO+SI + Sz + A + Sn

im =S,
n—-oo n

+
Then we call S the (C,1) sum of ) a,, and the (C,1) limits of S,, (Hardy[5],p.7)
The series1+0-1+1+0-1+1+0...,is not convergent but it is summable (C,1) to the sum% , (Titchmarsh [10],

p.4111).

a0_0+a0‘1 + ao_z + -
Let Ym—o Xnmo Amp= taiotaistas+-
+a2,0 + az‘l + a2,2 + -
be a double infinite series (Bromwich[2],p.92). The partial sum of double infinite series denoted bysS,, ,,, and

defined by
Sm,n = Z Z ai}
i=0 j=0
Write
Omn = m+1Dm+ 1)Ll
i=1j=1
—_\'m n i J
=S B (1-55) (1) e (2.5)

If 6,,, = S as m— oo, n — oo then we say that X7, _o Y=o @ » IS SUmmable to S by (C,1,1) method.
Consider the double infinite series Yo _o Yoo_o(—1)"™ 1"

in this case,
m n
Sm,n = ZZ(_l)iH

i=0 j=0
=L -DO)(Ej(-DP)
F1 =141t CDMA -1+ 1=+ (D)
1-(-1)m+ 1-(-1)"*
(L (e
=1+ D)™+ ()"
1,if,m=2n,n =2n,
0,if m=2n,n=2n,+1
0,if m=2n+1,n=2n,
0,if m=2n+1,n=2n,+1
Then  1im,, y0m Smn does not exist. The double infinite seriesY, o X7—o(—1)™*™ is not convergent.

Let us consider g,,, ,,.
m n
mmn. E 2 m+1 n+1
i=0 j=0

_G+ED™+2m)(3+(—1)"+2n)
- 16(m+1)(n+1)

where nq,n,eNy.

then
Gm,n.
Therefore the series Y% _o X_o(—1)™*™), is summable to % by(C,1,1) method.

2.5 Generalized Carleson operator
Write

(Swnf) @) = ZNoo Zhen{fo wa ( =k wo (x — k), f € LP(R), 1 <p <o,

WWW.ijera.com 102|Page

1
—>Zasm—>00,n—>00.



Shyam Lal and Susheel Kumar Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 7( Version 2), July 2014, pp.100-108

(UN,Nf) (x) =

(N+1)2 Z{V 0 Z} O(Sz]f)(x)
k

=20 2w (1= ) (1= 255 ¢, W (=R wi (x = K)
The Carleson operator for the Walsh type wavelet packet system, denoted by L, is defined by

Su
LA = o N0 Zh (oW (=) W (x — K. € IP(R), 1 <p <on,

su

= N Zpl (SN,Nf)(x)|-

The generalized carleson operator for the Walsh type wavelet packet system denoted by L. is defined by

LN = '3 1 [ Ze B (51, /) )|
Nsip1|(swf)(x)|.
S (1) (L LD wn R w = k) | (@26).

= N+1
Let us define the generalized Carleson Operator for the periodic Walsh type wavelet packet system {i,, }.

Write (syf)(x) = En=o{f, W)W, (), f €LP(R), 1 <p < .

1
(on ) = mi(sm ()

(N = Z Z(f ) (7, ()
- Z(l T T ().
The Carleson operator for the periodic Walsh type wavelet packet system, denoted by G, is defined by
Su ~ \~
GHE) = & IZNolF, W)W (O, f € LP(R), 1<p <o,

Su
=y = 116
The generalized Carleson operator for the periodic Walsh type wavelet type packet system, denoted by , is
defined by

(G )(x) = Nsipl ‘(Sof)(x) + (51 ) (x) + (52 (x) + -+ (syf)(x)

N+1
_ sup |1
TN >1lv+1 (S”f)(x)|
sup

= o 1|(aNf)<x)|
=y (- ) mam @ @)

2.6 Strong type (p,p) Operator
An operator T defined on L? (R) is of strong type(p,p) if it is sub-linear and there is a constant C such
that||ITf1l, < CIIfIl, forall f € LP(R).

I11. Main Results
In this paper, two new Theorem have been established in the following form:
Theorem 3.1 Let {w, } be a family of Walsh-type wavelet packet system. Then the generalized Carleson
operator L. defined by (2,6) for any Walsh-type wavelet packet system is of strong type(p,p),1< p < .
Theorem 3.2 Let {i, } be a periodic Walsh-type wavelet packets. Then the generalized Carleson Operator G,
defined by (2.7) for periodic Walsh type wavelet packet expansion of any f € LP(R),1 < p < o, converges
a.e...

3.1 Lemmas
For the proof of the theorems following lemmas are required:
Lemma 3.1 (Zygmund[12],p.197),Ifv,, v, v3 ... 15, are non negative and non increasing,then
|ugv1 + upvy + uzvs + -+ Uy v, | < vymax|Uy|
Where
Uk = U + u, + Us + -+ Uy for k:1,2,3,...,n.
Lemma 3.2 Let f; € L%(R), and define {f, },=, recursively by
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(x) = { fmn(2x) + f,2x —1),n=2m
WO =g (2x) = £ (2x — 1)n = 2m + 1
Then
foG) = S W ;o u2 D)
for m,j€EN,?2/ Sm<21+1
Lemma 3.3 Let{w,},s, be a family of Walsh type wavelet packets. If w; € C}(R) then there exists an
isomorphism i : LP (R) - LP(R),1 < p < o, such that
l)bwn(.—k) = Wn(. —k),n > O,k € 7.
Lemma (3.2) and (3.3) can be easily proved.
Lemma 3.4 (Billard [1] and Sjalin [9].
Let f € L1[0,1) and define
n 1
5,000 = . [ FOW©dew, (o).
k=00
Then the Carleson operator G defined by
Su
GHE) =215, (x
is of strong type (p,p) for 1< p < oo.

3.2 Proof of Theorem 3.1
For, f,g,L? (R)

(Lelf + D)) = < lowa(f + D)

=y o 1 B S (1= 25) (1= D) ¢ + g wa (=i (x = )
= SUP Ayw Zk—‘”( N+1) (1 lxyjrll)<f’ W (- —k))
N=>1 Ln=
- N N +(g'Wn( k))Wn(x _k)
sup n
<N>1 ZMZ S (1 NH)(f,wn(.—k))wn(x—k)
sup
£ Z Z 1_N+1 )(2 N+1)<g,wn(.—k)>wn(x—k)‘

= v 1|(aN,Nf)(x)| + v 2 Enw )]
=L@ + (Leg) @) -
Also for ¢ € R
Leaf)() = 2 1| OvnaN@)
_ sup
"N>1

L1

D (1—N—+1)( — o) (af, w (—R))w, (x = )|

| SuP ZZ |k|

aly o <1——><fW( —))w, (x = )
n=0 k=—N

N+1
= lal(Lef) ().
Choose M € N such that
Supp(w,,) € [-M, M] for n = 0. Fix p € (1,%) and take any
F) = Ynsorezdf wn (. —k)) w, (x — k) € LP(R). Define

L@ = D () WG =0, g0 = ) (fwa (=) Wyx = k).
n=>0,kEZ n>0,keZ
We have [Ifill, = Ilgkll,, with bounds independent of k (Lemma 3.3) .Note that for

Hx € [LI+ D:|L.f()]|>a}| < a%ij;lltﬁ fchfk(x)lp dx. Using the Marcinkiewiez interpolation theorem, it
suffices to prove that

L ficll, < Clificlly,
where C is a constant independent of k.
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Since

D7D Al <200+ D D IR < 206+ D) ) llgilly < GIF I

] I€Z k=l-n kez kez
where C; is constant.

Without loss of generality, we assume that k=0. Let K € N be the scale from which only the Haar filter is
used to generate the wavelet packets (w,,),, s k+1.
Let N € N and suppose 2/ < N < 2/*1 for some J> K + 1.Clearly, for

each x € R.

LN = oy o oy (1= 25) (1= L) ¢, wa (—k))wi (6 — K|
= supys1 |Z0o (1 - 25) (Fwa O wa()|, k=0,
< sup, oy e |20 (1= 25=) (Fown () wa (0]

22w (1= 75) (Fowa () wy ()
+supysir {SUPy averrt [Zhoy (1= 59) (Frwn (Y wa ()]}

=L+t say. (3.2
Using Lemma 3.1, we have

+SUp;>k+1

2k+1_1
ho=sup gy | D0 (1=575) (Fowa QP wa(®)
n=0

< SUD, y okt MAX X oic+1_q (W () wy (X)
K+1

< Xizo KW w, ()]
< I wa (M W ()Ml X(-n,wy (1)

< lfolly, X256 "M wnlly lwn GOl -y (- (33)
Next,
2/ -1
Jo = sup > (1-5) FmOmn )
2 ] >K+1 N +1 » Wn n
n=2k+1
sup
R R AT O]}
Also

sup J_ sup max
I >k + 1202k Q =D O @] <751y Zarsic -t o wa Ollwa Ol

< CZ(f, Wy () Wy O

n=0
= Cllfoll,- (34
Consider J,
N
_ sup _n
Bi= oy oo e 1 Z](l W O ()
2K " N
sup n
<D | s e e 4 Genz K (1= O ()| )
j=0 n=2/ +j2/ K
so it suffices to prove that
Sup sup o n
j>k+1 2J _|_j2]—K <N<?2 + (]'+1)2/—K Z (1 —N—H)(f,wn(.))wn(X)
n=2/ 4j2/ =K

14
< Clifoll,
forj=012..,2—1.FixJ>K+1,0<j<2®land 2 +j2/k <N <2 +(j +1)2/ X,

Write,
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N

fy= ) A=W O ().
n=2/+j2/ K
Using lemma 3.2, we have
2/ K1 N
, e
|]'3| = Z Z (1 _N—_l_l)(f Wn( ))W ol j2]7K(527(]7K)) WZk +](2 x=s) .
s=0 \n=2/+j2/K
Define
N
Fy(t) = (1 - N—-i-l) Fown (O _py -k (2),
n=2/+j2/ K
and
sup
F(t) N<2]+(]+1)2] KlFN(t)l
We have
N
Fl= Y () FwmOm ),
n=2/+j2/ K

smar| > (FwOw,)]
2 +j2) K=n<N
J—K _ —(] —
S ZE:O 1 F(SZ -1 |W2k+j((2/_K)X—S) ’

and using the compact support of the wavelet packets,
N

isl= > (=) o Ow @)

n=2/ +j2/ K

smax| > (fwnOw ()
2/ +j2) K=n<N
< llwzk + jll, X5 F(([2) 7% x] + 270759).
Note that F is constant on dyadic interval of type [[270 %), (I + 1)270~%) and taking
A= (([2Kx + 112790, [2) K x + (1 + 1)]270 5,
we have
N

> () o mOm®

n=2/ +j2/ K

|j’3|=

N

< max Z O W ()W ()

2/ +j2) K=n<nN
M+1

< skl 3 1l J, P

We need an estimate of F that does not depend onlJ. Note that for k 0< k < 2/7K using (2.3)
Wz] +j2/ K (t)Wk (t) 2] +j2) Kk (t)
since the binary expansions of 2/ + j2/ =¥ and of k have no 1’s in common.

Hence,
|Fy(©)] = [Wy 51—k (£)Fy (0)]
N
=1 D> () SO
n=2/ +j2/ K
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N

< max (f s wn ()W, (®)

2)+j2) K=n<N

Using lemma (3.4) , we have F(t)< 2(Ggo)(t). Thus,
N

(1= =2=) ¢ wa O ()

T N+1
n=2/ +j2/ K
N
< max (f wn ())wy, ()
2 +j2) K=n<N
M+1

< 2lwok+jll. ) 1817 | Ga©de.
I=—M 4
Let A} be the smallest dyadic interval containing A; and x , and note that |A7| < (M + 1) |4;] since
X E (AO - D)
We have

(1= =2=) ¢ wa O ()

n=2/+j2/ K N+1

< max

(F. W I ()
2 +j2) K=n<N

M+1
<2llwek +ll ) I [ Ga©de
I=—M A

< 4llwzk + jll.(M + 1)*(M*(Ggo) (X))

(3.5)
Where M~ is the maximal operator of Hardy and Little wood . The right hand side of (3.5) neither depend on N
nor J so we may conclude that

2K_1 N
Js, Y o > A= I w O ()
3T I>K+1 2/ +j2 K <N <2 +(+1)2/ K N+ 12 Wl )W
j=0 n=2/ +j2/ K

sup
Sg;<zhuﬂ*sw<ﬂ+o+nﬂ*>
(max|as 401 -% el fr W (D)W (0)])
< 4llwyk + jll.(M + D} (M*(Ggy)(x)),  a.e. (3.6)
Using (Sjalin [9]), M* and G both of strong type (p,p), hence both are bounded.

2K 1 N
sup < sup sup 1
||]>K+1]3||P— ]>K+1Z 20+ K< N<2 + (j+1)2/ K (
j=0 n=2/ +j2/ -k

n
- N—+1)<f’ w,, ())wy, (x)

P

< Cllgoll,

<alifoll,,  7=0123,..,251
Thus the Theorem 3.1 is completely established.

3.3 proof of the Theorem 3.2
Let f € LP[0,1), and choose M€ N such that supp(w,,)c [-M, M] for n> 0. Then

N
@GN =y D (1= 557) ¢ 7))
n=0
= o 1 [0 (1= 5 ) (T wa =) Ty wi G — k)|
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su
=y o 1 B (1= 22 S, wa (=) Sy w G — )|
sup
=N o 1 |y D (200 (1= 5) (o wa k) w (= ko) )|
su 1 —_—
=y o p [EHE S 30 (1= 25) f) FOIWa & = Ky dyw, (x — k)|

Following the proof of theorem 3.1, it can be proved that the generalized Carleson operator G, for the periodic
Walsh type wavelet packet expansions converges a.e..
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